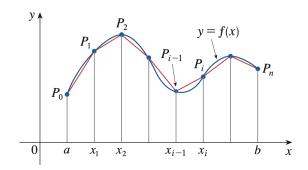
8.1 / 10.2 Arc Length

Theorem (Arc Length Formula). Let y = f(x) be a curve defined on the interval [a, b], and suppose that f'(x) is continuous on [a, b]. The arc length L of the curve is given by:

1. Polygonal Approximation:

- Divide the interval [a, b] into n subintervals of equal width Δx .
- For each i, let $y_i = f(x_i)$ and consider the points $P_i = (x_i, y_i)$ on the curve.
- Approximate the curve by a polygonal path connecting these points.



2. Length of a Single Segment:

- The length of a segment connecting two consecutive points P_{i-1} and P_i is:
- By the Mean Value Theorem, $\Delta y_i = f'(x_i^*) \Delta x$ for some $x_i^* \in [x_{i-1}, x_i]$.
- Substitute this into the segment length:

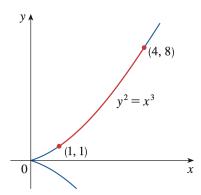
3. Total Length of the Polygonal Path:

• Sum the lengths of all segments:

4. Take the Limit as $n \to \infty$:

• As $n \to \infty$, $\Delta x \to 0$, and the sum becomes a definite integral:

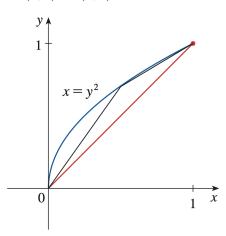
Example. Find the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (1,1) and (4,8).



Theorem. If a curve has the equation x = g(y), $c \le y \le d$, and g'(y) is continuous, then by interchanging the roles of x and y, we obtain the following formula for its length:

$$L = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} \, dy = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} \, dy.$$

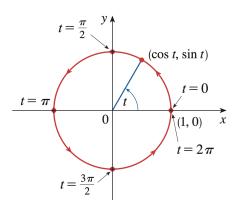
Example. Find the length of the arc of the parabola $x = y^2$ from (0,0) to (1,1).



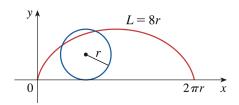
Example. Set up an integral for the length of the arc of the hyperbola xy=1 from (1,1) to $(2,\frac{1}{2})$.

Theorem. If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f'(t) and g'(t) are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is:

Example. Find the length of the unit circle described by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.



Example. Find the length of one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.



- One arch of the cycloid corresponds to the parameter interval: ______ .
- Compute the derivatives:

• Substitute into the arc length formula:

- Use the trigonometric identity $1 \cos \theta = 2\sin^2(\theta/2)$:
- Since $0 \le \theta \le 2\pi$, we have $0 \le \theta/2 \le \pi$, and so $\sin(\theta/2) \ge 0$.

Definition. Suppose a curve is described by x = f(u), y = g(u), where f'(u) and g'(u) are continuous. The arc length function s(t) gives the length of a curve from an initial point (f(a), g(a)) to the point (f(t), g(t)) corresponding to the parameter t. In particular,

Remark. If parametric equations describe the position of a moving particle, then the speed v(t) is the derivative of the arc length function s(t). Indeed, the speed v(t) is the rate of change of the total distance traveled along a curve with respect to time. By the Fundamental Theorem of Calculus,

Example. A particle's position is given by x = 2t + 3, $y = 4t^2$, $t \ge 0$. Find the speed of the particle when it is at the point (5,4).